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The distribution of the total time of persistence of a particle in a state A was derived both in an 
exact and an approximate form on the basis of a probability model of the conversion A =<± B. 

, The result was applied to the probability description of a change in size of one-dimensional 
crystals in a double crystallizer. The time change of the distribution of the crystal sizes can be 
described by the Fokker-Planck equation for diffusion with a diffusion coefficient proportional 
to the square of the sum of values of the growth and dissolution rate constants. 

We shall consider a particle that can exist in two states, A and B, passing reversibly 
from one to the other. We shall assume that the infinitesimal probability of transi­
tion of the particle from the state A to B or vice versa in the time interval t to t + At, 
where At -4 0, is equal to k M, where k is independent oftime (the particle is memory­
less). The conversion proper is considered an instantaneous event. This model forms 
the basis of a stochastic description of the chemical reaction A ~ B with a unit 
equilibrium constant, and was used in calculating the distribution of the number 
of conversions of A to Band B to A (i.e., number of elementary reaction events) 
of one particle and in the ensemble of particles in a finite time interval1 ,2. The present 
paper is devoted to the derivation of the distribution of the total time of persistence 
in a selected state (namely in A). The solution of this problem relates not only to the 
probability characteristics of chemical conversion of the given type, but also to the 
description of certain macroscopic systems such as a double crystallizer3

• 

Distribution of the Total Time of Persistence of a Particle in State A 

We assume that the particle is in the state A at time t = O. In the time interval 
(0; -r), this particle either remains in this state, or undergoes an odd number of trans i­
tions (it will be in the state B at time -r) , or undergoes an even number of transitions 
(it will be in the state A at time -r). The total number of transitions of the particle 
is described by the Poisson distribution 1: the probability that the number of transi­
tions in (0; -r) is m is equal to exp (- h) (h)mjmL 

The probability that the particle remains in (0; -r) unchanged and persists in the 
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state A for a time s to s + ds is given as 

exp(-h)b(s - ,)ds, (1) 

where b(s - ,) is the Dirac function (b distribution). The probability that the particle 
undergoes 2j -1 transitions U ~ 1) in (0; ,) and persists in state A for a total 
time s to s + ds is given as 

f
S

+
dS f k2j

-
1 exp (-h) _ ... dS l dS 3 ... dS2j - l . 

St+ SJ+ .. . S2j-l-S 

. J'-s _ .. . JdS 2 ds4 ... ds2j - 2 = k2i - 1 exp (- h) Si-l (, - s)i-t ds/(U-1)!)Z , 
52 +54 + ... S2j-2- 0 

(2) 

where Sj > 0 is the time interval between i - 1 and i-th tra~sition. The probability 
that the particle undergoes 2j transitions U ~ 1) in the interval (0; ,) and persists 
in the state A for the total time s to s + ds is given as 

k2j e~p (-h)Js _ ... JdS l dS3 .•• dS2j - l . 
Sl+ S3+·.· S2j_l-O 

• f2--1

S

S4 + .. S2j='-S-dS .. JdS2 dS4 . . . dS2j = k
2j 

exp (-h) si(, - sy- t dsfj!(j - 1)! 

(3) 

(Integrals in (2) and (3) are Dirichlet integrals or their differential forms.) 
Let pis) ds denote the probability that the particle persists in state A for a total 

time s to s + ds in the interval (0; ,). The probability density follows from expressions 
(1)-(3) (by summing and replacing the summation variable j by j + 1) in the form 

0() 

pls) = exp(-h){b(s - ,) + kI[es(, - s)JijU!)2 + 
j=O 

+ k2s I [k 2s(, - s)Jjfj!U + 1)!} = exp (- h) [b(s - ,) + klo(2ku) + 
j=O 

+ k(sju)I1(2ku)J, 0 < s ~ " (4) 

where 10 and It denote modified Bessel functions4 of the order 0 and 1, and u = 
= esc, - s)J 1

/
2

• It can easily be shown (by integrating the sums in (4) term by term) 
that the density p,(s) is normalized, i.e., its integral from 0 to, is equal to 1. * 

The integration of o(s - T) is to be understood as JO+ o(s - T) ds = 1. 
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The mean time of persistence of the particle in state A is given as 

E'(s) = Lsp.(s) ds = < exp (-h) [exp (h)/2 + sinh (h)/2h] = 

= «12) [1 -+ (1 - exp (-2h))/2h]. (5) 

(This can be derived also in the following way: the probability that the particle 
undergoes m transitions in (0; <) is1 exp (- h) (h)mlmL With m (m ~ 0) transitions, 
the particle is in the state A on the average for a time </2 or (m + 2) </(2m+ 2) 
for m odd or even, respectively. Hence, Eis) = < exp (-h) [1 + (1/2) h + 
+ (2/3)(hY/2! + ... ], which is identical with Eq. (5).) 

The second term in brackets in the final expression for E.(s) decreases to zero 
with increasing h and expresses 1) the vanishing influence of the initial condition 
(exponential term) and 2) the fact that for an even number of conversions the state 
A is, on the average, more probable than B (factor 1/2h). 

A numerical calculation of p.(s) shows that this one-peak density is generally 
asymmetrical with respect to the position of the maximum (Fig. 1). For h ~ 1, 
the functions 10 and 11 can be replaced, in the region of the maximum, by the first 
term of their asymptotic expansions and the density pis) can be approximated by 

(6) 

with a maximum at 8m >::; «/2) (1 + 1/2h) equal to p.(sm) >::; (2 1</n<)1 /2 (1 + 1/8h), 
with the mean E.(s) >::; Sm and dispersion D~(s) >::; «/4k) (1 - 1/4h). The values 
of Sm and p.(sm) calculated from Eq. (4) and approximation (6) do not differ for 

FIG. 1 

Reduced Probability Density of the Total 
Time of Persistence in State A 

Values of k7: : 1 5, 2 15, 3 30, 4 100; 
X = sir, Y = p,(s)/p,(sm)' Solid curves cor­
respond to the exact density (4), dashed 
curve to the approximation (6). For k7: > 15, 
the approximation (6) coincides with the 
exact density. 
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kr> 5 by more than 1%. It is apparent from Fig. 1 that the approximation (6) 
is satisfactory for kr > 5 practically in the whole interval (0; 't) . 

In the limit for kr --+ 00, it is possible to approximate p.(s) by the normal density 

(7) 

with the mean E'(s) = Sm = 't/2, maximum p.(sm) = (2kjln)I /2, and dispersion 
D;(s) = 'tj4k. Numerical calculations show that this approximation is satisfactory 
already for kr > 50. 

The mean time of persistence of the particle in the state A (or B) between the i-1 
and i-th transition is 11k. The term kr can hence be interpreted as the mean number 
of transitions of the particle in the interval (0; 't). Our numerical calculations show 
that when the mean number of transitions is equal to several tens, the probability 
density of the total time of persistence of the particle in the stat~ A can satisfactorily be 
described by a normal distribution with the center at 't/2. . 

Simplified Model of Double Crystallizer 

We shall consider two vessels, A and B, mutually connected. At a time t = 0, the 
first one contains a solution with N equal one-dimensional crystals of length xo, 
while the other contains only the solution. In the time interval (0; 't) the crystals 
pass from the vessel A to B and back; the conditions (temperature and concentration) 
are chosen such that the crystals in the vessel A grow at a linear rate Xl and in the 
vessel B they dissolve at a linear rate X 2 • Both rates are independent of time and size of 
the crystals and are positive. The probability of transition of a crystal from one vessel 
into the other in the interval (t, t + Llt) , Llt --+ 0, is k Llt and the mean time of persist­
ence of a crystal in each of the vessels between two consecutive transitions is 1j k. 
At a time 't an arbitrarily chosen crystal has a length x which can be expressed 
as x = Xo + XIS - x2('t - s) = Xo - X2't + (Xl + x2) s, where s is a random variable 
given by the density (4). We assume that Xo - X 2't > ° and that the rate of formation 
of new crystals is negligible, SQ that the total number of crystals is constant. The 
probability density of the crystal length at a time 't is given as 

(8) 

where Xo - X 2't ~ X ~ Xo + XI't and pl ... ) is the density according to Eq. (4). 
The mean crystal length at a time 't is given as 

E.(x) = Xo + (Xl - X2) 't/2 + (Xl + X2) [1 - exp (-2kr)]/4k ~ 

~ Xo + (Xl + x2)j4k + (Xl - X2) 'tj2 . (9) 
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In the general case, the distribution of the crystal length at t = 0 is determined by the 
density q(xo), a ~ Xo ~ b, f~ q(xo) dxo = 1. We assume that a - X2' > 0; then 
we have 

The mean crystal length at time, is given as 

E,(x) = E(xo) + (Xl + X2) Els) - X2' :::::: 

:::::: E(xo) + (Xl - x2 ) ,!2 + (Xl + x2)!4k, (11) 

where E(xo) = f~ Xo q(xo) dxo and Els) is given by Eq. (5). The dispersion of the 
crystal length at time, is 

(12) 

and D2(XO) is the dispersion of the crystal length at t = O. The approximate expres­
sions in (9), (11), and (12) correspond to the replacement of the exact density Pl- .. ) 
by the approximation (6). Eqs (11) and (12) enable one to calculate Xl and X2 from the 
value of k and the first and second moments of the distribution of the crystal length 
at time ,. 

In the limit for h ~ 00, the probability density f(x, ,) is the solution of the Fok­
ker-Planck diffusion equation6

: 

with the diffusion coefficient (Xl + x 2)2!8k. 
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