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The distribution of the total time of persistence of a particle in a state A was derived both in an
exact and an abproximate form on the basis of a probability model of the conversion A <= B.

_ The result was applied to the probability description of a change in size of one-dimensional
crystals in a double crystallizer. The time change of the distribution of the crystal sizes can be
described by the Fokker-Planck equation for diffusion with a diffusion coefficient proportional
to the square of the sum of values of the growth and dissolution rate constants.

We shall consider a particle that can exist in two states, A and B, passing reversibly
from one to the other. We shall assume that the infinitesimal probability of transi-
tion of the particle from the state A to B or vice versa in the time interval ¢ to t + A,
where At — 0, is equal to k At, where k is independent of time (the particle is memory-
less). The conversion proper is considered an instantaneous event. This model forms
the basis of a stochastic description of the chemical reaction A = B with a unit
equilibrium constant, and was used in calculating the distribution of the number
of conversions of A to B and B to A (i.e., number of elementary reaction events)
of one particle and in the ensemble of particles in a finite time interval'-2. The present
paper is devoted to the derivation of the distribution of the total time of persistence
in a selected state (namely in A). The solution of this problem relates not only to the
probability characteristics of chemical conversion of the given type, but also to the
description of certain macroscopic systems such as a double crystallizer>.

Distribution of the Total Time of Persistence of a Particle in State A

We assume that the particle is in the state A at time ¢ = 0. In the time interval
(0; 7, this particle either remains in this state, or undergoes an odd number of transi-
tions (it will be in the state B at time 7), or undergoes an even number of transitions
(it will be in the state A at time 7). The total number of transitions of the particle
is described by the Poisson distribution®: the probability that the number of transi-
tions in (0; ¢) is m is equal to exp (— k) (kt)"/m!.

The probability that the particle remains in (0; r) unchanged and persists in the
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state A for a time s to s + ds is given as
exp (—kt) 8(s — 7)ds, 6

where 5(5 — 1) is the Dirac function (& distribution). The probability that the particle
undergoes 2j—1 transitions (j = 1) in (0; ) and persists in state A for a total
time sto s + dsis given as

s +ds

k*™ ' exp (—k1) ...st1 dsy ... dsyy .

Si+sy+..s2j-1=5

f . .stz dsy. . .dsy;_,=k¥ " texp (—kt) s’ (v — s) T dsf((j—1)1)?,

2+sa+...825-2=0
@)

where s; > 0 is the time interval between i — 1 and i-th transition. The probability
that the particle undergoes 2j transitions (j = 1) in the interval (0; 7> and persists
in the state A for the total time s to s + ds is given as

ns

k¥ exp (—kt .. |ds;dsy ... dsy_ g -
J

Jsx{'s;'f”.Slj—l:O

TS
J ‘..J‘dsz dsy ... dsy; = k¥ exp (—kz) sz — s)~ " ds[j!(j — 1)!

s2¥sat .oy =t-s5—ds
®)

(Integrals in (2) and (3) are Dirichlet integrals or their differential forms.)

Let p(s) ds denote the probability that the particle persists in state A for a total
time s to s + ds in the interval (0; ). The probability density follows from expressions
(1)—(3) (by summing and replacing the summation variable j by j + 1) in the form

p(6) = exp (—k0) {8(s = D) + kT [5(x = PIY? +
1 Y (ke = I + 1)1 = exp (—ke) [a(s — 1) + klo(2ku) +
e + k(sfu)I,(2ku)], 0<s<t, 4)
where I, and I, denote modified Bessel functions* of the order 0 and 1, and u =

= [s(z — s)]"/2. It can easily be shown (by integrating the sums in (4) term by term)
that the density p,(s) is normalized, i.e., its integral from 0 to 7 is equal to 1.*

® The integration of 8(s — ) is to be understood as [§* (s — 1) ds = 1.
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The mean time of persistence of the particle in state A is given as

E(s) = J"sp((s) ds = texp (—kt) [exp (kt)[2 + sinh (k7)[2kt] =

= (t2) [1 + (1 — exp (—2kt))[2kt] . (%)

(This can be derived also in the following way: the probability that the particle
undergoes m transitions in (0; ) is' exp (— k) (kt)™/m!. With m (m 2 0) transitions,
the particle is in the state A on the average for a time /2 or (m + 2) 1/2m+ 2)
for m odd or even, respectively. Hence, E(s)= texp(—kt)[l + (1/2) kt +
+ (2/3) (kt)*[2! + ...], which s identical with Eq. (5).)

The second term in brackets in the final expression for E(s) decreases to zero
with increasing kt and expresses 1) the vanishing influence of the initial condition
(exponential term) and 2) the fact that for an even number of conversions the state
A is, on the average, more probable than B (factor 1/2kr).

A numerical calculation of p(s) shows that this one-peak density is generally
asymmetrical with respect to the position of the maximum (Fig. 1). For k1 > 1,
the functions I, and I, can be replaced, in the region of the maximum, by the first
term of their asymptotic expansion® and the density p,(s) can be approximated by

p5) = (2kfe) (s + 1/2)exp [~ 2 — /2] ©
with a maximum at s, ~ (¢/2) (1 + 1/2kt) equal to p(s,) ~ (2k/nt)*'2 (1 + 1/8kz),

with the mean E(s) ~ s, and dispersion D}(s) ~ (t/4k) (1 — 1]4kt). The values
of s,, and p,(s,,) calculated from Eq. (4) and approximation (6) do not differ for

Fic. |
Reduced Probability Density of the Total
Time of Persistence in State A

Values of kt: 1 5, 2 15, 3 30, 4 100;
X = s/t, Y= p(s)/p(sy). Solid curves cor-
respond to the exact density (4), dashed
curve to the approximation (6). For kt > 15,
the approximation (6) coincides with the
exact density.
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kt > 5 by more than 1%. It is apparent from Fig. 1 that the approximation (6)
is satisfactory for kt > 5 practically in the whole interval (0; ).

In the limit for kt — oo, it is possible to approximate p,(s) by the normal density
ps) = (2k[nt)"/% exp [ —2k(s — 1/2)?[7] (7)

with the mean E(s) = s, = t/2, maximum p(s,) = (2k/nt)"/?, and dispersion
DX(s) = t/4k. Numerical calculations show that this approximation is satisfactory
already for kt > 50.

The mean time of persistence of the particle in the state A (or B) between the i-1
and i-th transition is 1/k. The term kt can hence be interpreted as the mean number
of transitions of the particle in the interval (0; ). Our numerical calculations show
that when the mean number of transitions is equal to several tens, the probability
density of the total time of persistence of the particle in the state A can satisfactorily be
described by a normal distribution with the center at /2.

Simplified Model of Double Crystallizer

We shall consider two vessels, A and B, mutually connected. At a time ¢ = 0, the
first one contains a solution with N equal one-dimensional crystals of length x,,
while the other contains only the solution. In the time interval (0; 7) the crystals
pass from the vessel A to B and back; the conditions (temperature and concentration)
are chosen such that the crystals in the vessel A grow at a linear rate x, and in the
vessel B they dissolve at a linear rate x,. Both rates are independent of time and size of
the crystals and are positive. The probability of transition of a crystal from one vessel
into the other in the interval (1, ¢ + Af), At > 0, is k At and the mean time of persist-
ence of a crystal in each of the vessels between two consecutive transitions is 1/k.
At a time 7 an arbitrarily chosen crystal has a length x which can be expressed
asx = xo + #;5 — #(T — 5) = Xo — %57 + (%, + %,) 5, where s is a random variable
given by the density (4). We assume that x, — %,7 > 0and that the rate of formation
of new crystals is negligible, so that the total number of crystals is constant. The
probability density of the crystal length at a time 7 is given as

Sl 7) = pl(x = xo + 229)(61 + 22)][01 + %2), ()

where xo — %,71 £ x < X, + %,7 and p...) is the density according to Eq. (4).
The mean crystal length at a time 7 is given as

Efx) = xo + (5 = %) 7[2 + (e + 25) [1 = exp (—2kr)][4k ~
% xo + () + )bk + (e — %) 7)2. )

Collection Czechoslovak Chem. Commun. (Vol. 46] [1981]



Reversible First-Order Conversion 1221

In the general case, the distribution of the crystal length at t = 0 is determined by the
density q(x,), a < xo < b, [24q(x,) dxo = 1. We assume that a — x,7 > 0; then
we have

a

fx, 1) = (%, + 22)".[.bp‘[(x — Xo + %,7)[(¢, + x2)] q(x0) dxo . (10)

The mean crystal length at time 7 is given as

E(x) = E(xo) + (%, + ) E(s) — np1 =

~ E(xo) + (3, — #,) /2 + ¢y + x,)/4k, (11)

where E(x,) = [} X0 g(x,) dxo and Es) is given by Eq. (5). The dispersion of the
crystal length at time 7 is

DX(x) ~ D¥(xo) + (3, + 2,)*/4k — (¢, + x,)/16k? (12)

and D*(x,) is the dispersion of the crystal length at ¢ = 0. The approximate expres-
sions in (9), (11), and (12) correspond to the replacement of the exact density p...)
by the approximation (6). Eqs (1) and (12) enable one to calculate x, and x, from the
value of k and the first and second moments of the distribution of the crystal length
at time 7.

In the limit for kt — oo, the probability density f(x, 7) is the solution of the Fok-
ker-Planck diffusion equation®:

Af(x, 7)for = —[(x, — %,)[2] 8 (x, 7)]dx + [, + x2)?[8K)]0*f(x, T)[ex* (13)

with the diffusion coefficient (¢, + x,)*/8k.
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